



## **IDA Series**

Pressure transducers for industrial applications



## **Table of Contents**

| Content                   | Chapter | Page | lcon        |
|---------------------------|---------|------|-------------|
| General                   | 1       | 3    | i           |
| Notes on safety           | 2       | 5    | $\triangle$ |
| Technical data            | 3       | 6    | r<br>m<br>t |
| Function                  | 4       | 13   |             |
| Transport/<br>delivery    | 5       | 15   |             |
| Installation              | 6       | 16   |             |
| Commissioning             | 7       | 24   | START       |
| Maintenance               | 8       | 27   |             |
| Accessories               | 9       | 28   |             |
| Troubleshooting           | 10      | 29   |             |
| Declaration of conformity | 11      | 30   | C€          |



#### 1. General

| 1.1 | Important information | 3 |
|-----|-----------------------|---|
| 1.2 | Copyright             | 3 |
| 1.3 | Explanation of icons  | 4 |
| 1.4 | Abbreviations         | 4 |
| 1.5 | Correct use           | 4 |
| 1.6 | User's obligations    | 4 |

#### 1.1 Important information

This manual applies to the IDA series only. It must be kept near the equipment in a readily and immediately accessible location at all times.

The content of this manual must be read, understood and followed in all points by all relevant people. This applies in particular to the notes on safety. Following the safety instructions will help to prevent accidents, defects and malfunctions.

**DYNISCO** will not be held liable for any injury, loss or damage resulting from failure to follow the instructions in this manual.

If malfunctions occur in spite of having followed the operating instructions, please contact the **DYNISCO** customer service department (see chapter 8, Maintenance).

This applies in particular during the warranty period.

#### 1.2 Copyright

Copyright law requires that this manual be used for inhouse purposes only.

All reproduction, even partially and for in-house purposes, requires the approval of **DYNISCO**. This manual may not be forwarded to third parties.



#### 1.3 Explanation of icons

The manual uses icons to indicate information pertaining to safety:

ATTENTION Risk of destruction or damage to equipment, machines or installations



General danger to life or limb

The safety instructions are provided again in the individual chapters of the manual.

#### 1.4 Abbreviations

The following abbreviations are used:

OM operating manual PT pressure transducer

**f.s.** of full scale

#### 1.5 Correct use

The purpose of the IDA pressure transducer is to measure pressure in industrial applications as part of a larger overall system.

Type specific installation of the PT with:

- Internal thread ISO 228/1 G1/4 (IDA 33x)
- Screw-in trunnion with external thread DIN 3852-A G¼A (IDA 35x)
- Thread M18 x 1.5 (IDA 37x)

The safety and accident prevention regulations specific to the application must be followed.

When using the PT as a safety component in accordance with the EC Machine Directive, Annex IIc, the equipment manufacturer must take any necessary precautions to ensure that malfunctions of the PT cannot cause damage or injury.

#### 1.6 User's obligations

The operator or owner of the larger overall system, e.g. a machine, is responsible for following the safety and accident prevention regulations that apply to the specific application.



### 2. Notes on safety



The operator or owner of the larger overall system is responsible for following the safety and accident prevention regulations that apply to the specific application.

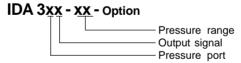


When planning machinery and using the PT, follow the safety and accident prevention regulations that apply to your application, e.g.:

- EN 60204, Electrical equipment in machines.
- EN 292, Machine safety, general design guidelines.
- DIN 57 100 Part 410, Protection against electric shock.

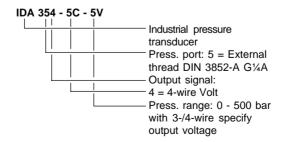


Mounting and electrical connection of the PT must be done by authorised specialists with EMC training only, following all applicable regulations, and in pressure-less, voltage-free condition with the machine switched off.


The machine must be secured against being switched back on!



#### 3. Technical Data


| 3.1   | Ordering guide              | 6  |
|-------|-----------------------------|----|
| 3.2   | Ordering example            | 6  |
| 3.3   | Performance characteristics | 7  |
| 3.3.1 | Accuracy                    | 7  |
| 3.3.2 | Repeatability               | 7  |
| 3.3.3 | Resolution                  | 7  |
| 3.4   | Pressure side connection    | 7  |
| 3.5   | Pressure ranges             | 7  |
| 3.5.1 | Pressure ranges in bar      | 7  |
| 3.5.2 | Max. Overload               | 7  |
| 3.5.3 | Burstpressure               | 7  |
| 3.5.4 | Limit frequency             | 8  |
| 3.5.5 | Rise time                   | 8  |
| 3.6   | Electrical Data             | 8  |
| 3.7   | Temperature influence       | 9  |
| 3.8   | EMC requirements            | 10 |
| 3.9   | Materials                   | 10 |
| 3.10  | Max. Mounting torque        | 10 |
| 3.11  | Environmental protection    | 10 |
| 3.12  | Weight                      | 10 |
| 3.13  | Seal                        | 10 |
| 3.14  | Dimensions                  | 11 |

## 3.1 Ordering guide



The exact meanings of the letter/digit combinations are given in the corresponding sections of chapter 3.

#### 3.2 Ordering example





#### 3.3 Performance characteristics (IDA3xx-xx)

#### 3.3.1 Accuracy

(Linearity and hysteresis at T = constant)

IDA33x / IDA35x  $\pm 0.3\%$  typ.,  $\pm 0.5\%$  of full

scale IDA37x

scale

3.3.2 Repeatability ± 0.1 % of full scale

pressure

3.3.3 Resolution infinite

3.4 Pressure side connection (IDA3Xx-xx)

IDA33x Internal thread ISO228/1-G1/4

IDA35x Screw-in trunnion with

external

thread DIN 3852-A G1/4A

IDA3**7**x Screw-in trunnion with

external

thread M18 x 1.5 flush diaphragm

±0.75% typ., ±1% of full

#### 3.5 Pressure ranges (IDA3xx-XX)

### 3.5.1 Pressure ranges in bar

| Model number                                                                                                                                  | Permitted pressure range<br>bar                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| IDA3xx-20<br>IDA3xx-35<br>IDA3xx-50<br>IDA3xx-1C<br>IDA3xx-1,5C<br>IDA3xx-2C<br>IDA3xx-2C<br>IDA3xx-5C<br>IDA3xx-5C<br>IDA3xx-7C<br>IDA3xx-1M | 0 - 20 series 37x only 0 - 35 series 37x only 0 - 50 0 - 100 0 - 150 0 - 200 0 - 350 0 - 500 0 - 700 0 - 1000 |
|                                                                                                                                               |                                                                                                               |

Other pressure ranges on request

## 3.5.2 Max. Overload (without influencing operating data)

2 x full scale pressure up to 700 bar Max. 1500 bar for the 1000 bar range



3.5.3 Burst pressure

4 x full scale pressure 3 x full scale pressure for the 20 bar and 1000 bar

range

3.5.4 Limit frequency (not IDA3x0)

3.5.5 Rise time (only IDA3x0)

IDA330 / IDA350 300 μs max. IDA370 30 μs max

3.6 Electrical data (IDA3xX-xx)

Configuration 4-arm Wheatstone bridge

strain gauge

Bridge resistance IDA33x/IDA35x, 350  $\Omega \pm 1$  %

IDA37x, 350  $\Omega \pm 10$  %

Output signal

IDA3x**0** 4-arm Wheatstone bridge

strain gauge without amplifier

at 20 bar >2.2 mV/V from 35 bar >2.9 mV/V

(EMC: connecting cables defined as data lines)

IDA3x2 2-wire mA with amplifier

4 - 20 mA

 $(R_L < (38.2 \times U_S - 380) \Omega$ 

 $R_{\rm L} < 536.8 \,\Omega \, {\rm bei} \, {\rm U_s} = 24 \, {\rm V}$ 

(EMC: connecting cables defined as data lines)

IDA3x3 3-wire Volt with amplifier

0 - 5 VDC ( $R_L > 5 kΩ$ ) 0 - 10 VDC ( $R_L > 10 kΩ$ ) 1 - 6 VDC ( $R_L > 10 kΩ$ ) 1 - 11 VDC ( $R_L > 10 kΩ$ )

IDA3x**4** 4-wire Volt with amplifier

0 - 5 VDC ( $R_L > 5 kΩ$ ) 0 - 10 VDC ( $R_L > 10 kΩ$ )

Supply voltage

IDA3x**0** 10 VDC (recommended)

min. 6 VDC, max. 12 VDC

IDA3x2 10 - 36 VDC

IDA3x**3** 15 - 32 VDC (U<sub>A</sub> 0 - 10 V)

10 - 32 VDC (U<sub>A</sub> 0 - 5 V)



IDA3x4

4 - wire Volt (unipolar) 19 - 32 VDC

4 - wire Volt (bipolar)  $\pm 13$  to  $\pm 16$  VDC (U<sub>4</sub> 0 - 10 V)

 $\pm 10$  to  $\pm 16$  VDC ( $U_{\Delta}$  0 - 5 V)

Calibration function (room temperature)

80 % ± 0.5 % of full scale output by externally con-

necting contacts 5 and 6

Zero point

(only IDA3x0) ± 1 % ± 2 %

IDA330 / IDA350 IDA370

(--- IDA0

Zero balance (not IDA3x0)

± 5 %,

min. - 2 % / + 5 % of full scale with 2-wire

Range balance (not IDA3x0)

± 5 % of full scale

Leakage resistance  $> 1000 \text{ M}\Omega$  at 50 V

#### 3.7 Temperature influence

Storage temperature

IDA3x2 / IDA3x3 / IDA3x4 - 45°C to + 120°C IDA3x0 - 55°C to +120°C

x0 - 55°C to +120°C (medium temperature)

Operating temperature

IDA3x2 / IDA3x3 / IDA3x4 - 25°C to + 85°C

IDA3x0 - 40°C to +120°C (medium temperature)

Compensated temperature range

IDA3x0 - 40°C to +120°C (medium temperature)

Zero shift due to temperature change

IDA33x / IDA35x ± 0.1 % f.s. / 10 °C typ.
IDA37x ± 0.4 % f.s. / 10 °C typ.

Sensitivity shift due to temperature change

IDA33x / IDA35x  $\pm 0.2 \% f.s. / 10 °C typ.$  IDA37x  $\pm 0.4 \% f.s. / 10 °C typ.$ 



#### 3.8 EMC requirements

Conforming to **C** € in accordance with EMC directive.

Emitted interference DIN EN 50081-1

(residential area) DIN EN 50082-2

Immunity DIN EN 50082-2 (industrial area)

3.9 Materials

In contact with medium 15-5PH Mat.No. 1.4545

3.10 Max. Mounting torque 22 Nm

3.11 Environmental protection to IEC 529

Pressure transducer IP54 (without connector)

Standard female cable

connector DIN IP40

Female cable

connector option D06 IP65

Cable connection

option D05 IP67

**3.12 Weight** 0.25 kg

3.13 Seal

Data of the standard seal:

Appropriate media Mineral oil, water, air,

oil-water-emulsions

Temperature range - 35°C to + 120°C according

to elastomer quality

Operating pressure When fitted in a recess up to

1000 bar.

Without recess and outside  $\varnothing$  of seal < 40 mm up to 400 bar



#### 3.14 Dimensions



Fig. 01: IDA330

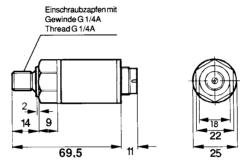
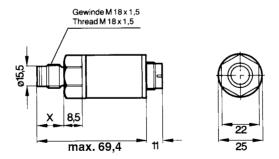




Fig. 02: IDA350



|   | 20 bar       | 35 bar                   | 50 bar      | 100 bar     | 150 bar                 |
|---|--------------|--------------------------|-------------|-------------|-------------------------|
| Х | 12.55±0.305  | 12.61±0.305              | 12.78±0.305 | 12.95±0.313 | 13.12 <sup>±0.313</sup> |
|   | 200 bar      | 350 bar                  | 500 bar     | 700 bar     | 1000 bar                |
| Х | 13.225±0.313 | 13.515 <sup>±0.313</sup> | 13.75±0.313 | 13.95±0.313 | 14.29±0.313             |

Fig. 03: IDA370



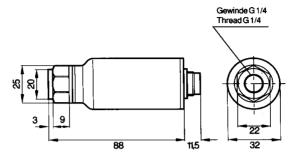



Fig. 04: IDA332 / IDA333 / IDA334

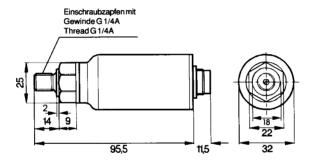
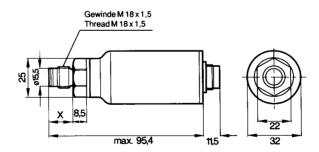




Fig. 05: IDA352 / IDA353 / IDA354



|   | 20 bar      | 35 bar      | 50 bar      | 100 bar     | 150 bar                 |
|---|-------------|-------------|-------------|-------------|-------------------------|
| Х | 12.55±0.305 | 12.61±0.305 | 12.78±0.305 | 12.95±0.313 | 13.12 <sup>±0.313</sup> |
|   | 200 bar     | 350 bar     | 500 bar     | 700 bar     | 1000 bar                |
|   | 200 bai     | 000 bai     | 300 bai     | 700 bai     | 1000 bai                |

Fig. 06: IDA372 / IDA373 / IDA374



#### 4. Function

| 4.1 | Construction             | 13 |
|-----|--------------------------|----|
| 4.2 | Description of functions | 13 |

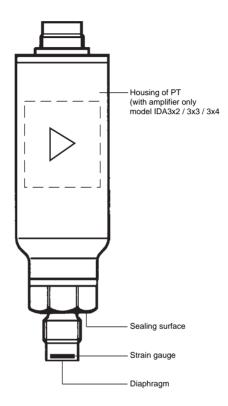
#### 4.1 Construction

The PTs of series IDA are industry standard.

The most important advantages are:

- manufactured under ISO 9001
- thermal stability
- insensitivity to pressure peaks
- insensitivity to electromagnetic radiation (EMC)
- fully welded housing
- potted electronics
- maximum pressure 1000 bar

#### 4.2 Description of functions


Through a diaphragm, the PT furnishes an electrical signal that is proportional to the pressure of the medium.

The pressure applied by the medium is forwarded to the measuring diaphragm. The deflection of the measuring diaphragm changes the resistance of the strain gauge bonded to the measuring diaphragm. The strain gauge is a Wheatstone bridge.

Dependent on the PT model, an electric signal proportional to the pressure is generated via the supply voltage or the amplifier.



Fig. 07: Functioning principle of the PT of the IDA series





## 5. Transport/delivery

| 5.1 | Transport / packing / |    |
|-----|-----------------------|----|
|     | transport damage      | 15 |
| 5.2 | Storage               | 15 |
| 5.3 | Scope of delivery     | 15 |

**ATTENTION** ESD sensitive component. Electrostatic discharge may damage the PT. Take ESD precautions.

#### 5.1 Transport/packing/transport damage

- Do not let the PT be damaged by other items during transit.
- Use only the original packaging.
- Report transport damage to **DYNISCO** immediately in writing.

#### 5.2 Storage

- Store the PT in original packaging only.
- Protect against dust and moisture.

#### 5.3 Scope of delivery

- PT with diaphragm protection cap
- Seal
- Cable socket
- Calibration sheet
- Operating manual



#### 6. Installation

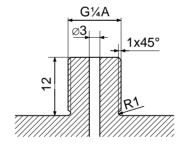
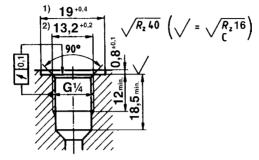
| 6.1   | Screw-in trunnion / Mounting hole | 16 |
|-------|-----------------------------------|----|
| 6.2   | Mounting the Pressure Transducer  | 18 |
| 6.3   | Electrical connection             | 19 |
| 6.3.1 | EMC / C€ compliant connection     | 20 |
| 6.4   | Connection assignments            | 20 |
| 6.5   | Wiring                            | 22 |

ATTENTION Ambient temperature for the housing max. +85°C. Higher temperatures can result in damage and malfunctions. Mount the PT only in locations where these temperatures are not exceeded.

#### 6.1 Screw-in trunnion / Mounting hole

 Make screw-in trunnion / mounting hole as shown in figure 08 / 09 and 10.

Fig. 08: Screw-in trunnion for PT IDA33x with internal thread according to ISO 228/1 - G1/4

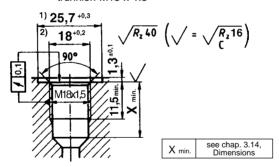




Fig. 09: Mounting hole form X for PT IDA 35x with screw-in trunnion according to DIN 3852-A G¼A



- The recess is not nessecary when no seal is used and the contact area is plain and rectangular to the axis of the thread.
- 2) Thread counterbored to outside diameter.

Fig. 10: Mounting hole for PT IDA 37x with screw-in trunnion M18 x 1.5



- The recess is not nessecary when no seal is used and the contact area is plain and rectangular to the axis of the thread.
- 2) Thread counterbored to outside diameter.



When reworking the screw-in trunnion / mounting hole, pay particular attention to the centricity of:

- the hole.
- the thread and
- the sealing surface.

Pressure sealing with the standard seal takes place on the sealing surface and on the front cylindrical section of the PT (see figures 07).

The sealing surface must be:

- correctly machined
- free from marks and rough edges

#### 6.2 Mounting the Pressure Transducer



Mounting and electrical connection of the PT must be done by authorised specialists with EMC training only, following all applicable regulations, and in pressureless, voltage-free condition with the machine switched off

## The machine must be secured against being switched back on!

ATTENTION ESD sensitive component. Electrostatic discharge may damage the PT. Take ESD precautions.

ATTENTION Before mounting the PT, check the screw-in trunnion / mounting hole carefully. The PT must only be mounted when the screw-in trunnion / mounting hole satisfy the requirements stipulated in chapter 6.1. Screw-in trunnion / mounting hole that does not satisfy these requirements can damage the PT.

**ATTENTION** For pressure sealing use always the seal that is delivered with the PT!

ATTENTION To prevent the PT from sticking permanently at the screw-in trunnion / mounting hole, coat the thread section of the transducer with high temperature resistant grease or a suitable parting agent.

ATTENTION Always use a spanner applied to the designated hexagon collar when screwing the PT in and out. Do not apply the tool to the housing!



ATTENTION Maximum mounting torque 22 Nm. If the mounting torque is too high, the PT may be damaged or its zero point may shift.

- put the seal between PT and screw-in trunnion / mounting hole. The seal have to fit plain to the surface and must not be damaged.
- screw the PT to the screw-in trunnion / mounting hole and tighten.

#### 6.3 Electrical connection



Mounting and electrical connection of the PT must be done by authorised specialists with EMC training only, following all applicable regulations, and in pressureless, voltage-free condition with the machine switched off.

The machine must be secured against being switched back on!

ATTENTION ESD sensitive component. Electrostatic discharge may damage the PT. Take ESD precautions.

ATTENTION Avoid laying the power cable in the direct vicinity of cables carrying higher voltages or switching inductive or capacitive loads.

ATTENTION An EMC compliant power supply must be used. The electrical connection must comply with EMC requirements.

ATTENTION If the electrical connection is not made as described in chapter 6.3.1, or if cables / cable connectors / cable glands other than those stipulated by **DYNISCO** are used, **DYNISCO** cannot guarantee that EMC requirements will be satisfied.



#### 6.3.1 EMC / C€ compliant connection

- Earth the machine section with the screw-in trunnion / mounting hole for the PT in accordance with regulations. The PT must be connected to earth via the screw-in trunnion / mounting hole.
- Connect the shield of the connecting cable on both sides, making sure it conducts with full and continuous contact.
- When introducing the connecting cable into an EMC compliant switch cabinet, for example, connect the shield correctely (cable gland, conducting, full contact, continuous) to the conductive housing or route it via built-in cable connector that is also connected to the conductive housing.
- Connect unused cable cores or free cable ends correctely to the cable shield on both sides.

For order numbers of EMC compliant cable connectors required for connecting the PT, see chapter 9, accessories.

#### 6.4 Connection assignments

Female connector:

#### Standard models IDA:

Equipment connector: 7-pin male connector.

DİN DIN

Fig. 11: 7-pin female connector



Top view solder side

| PIN | Designation        |
|-----|--------------------|
| 1   | supply voltage (+) |
| 2   | supply voltage (-) |
| 3   | signal (+)         |
| 4   | signal (-)         |
| 5   | calibration        |
| 6   | calibration        |
| 7   |                    |

Example for IDA3x4

The connector housing is connected conductively to the housing of the PT.



#### Models IDA with cable connection, option D05

| Colour of core | Designation                           |
|----------------|---------------------------------------|
| WH (white)     | supply voltage (+)                    |
| GN (green)     | supply voltage (-)                    |
| YE (yellow)    | signal (+)                            |
| GY (grey)      | signal (-)                            |
| PK (pink)      | calibration                           |
| BN (brown)     | calibration                           |
| transparent    | shield (connected conductively to the |
|                | housing of the PT)                    |
|                |                                       |

Example for IDA3x4

ATTENTION To fulfil the EMC / C€ rquirements at the installation of the models with cable connections

(option D05) the cable shield have to be connected according to chapter 6.3.1, EMC / C€ compliant connection. A connection via the transparent cable core is not sufficient for an EMC / C€ compliant connection!

#### Models IDA3x0 with option D21:

Equipment connector: 6-pin male connector,

Bendix PT02A-10-6P

Female connector: PT06A-10-6S(SR)

Fig. 12: 6-pin female connector



| PIN | Designation        |
|-----|--------------------|
| Α   | signal (+)         |
| В   | signal (-)         |
| С   | supply voltage (+) |
| D   | supply voltage (-) |
| E   | calibration        |
| F   | calibration        |

Top view solder side I

The connector housing is connected conductively to the housing of the PT.



#### 6.5 Wiring

Fig. 13: Wiring proposal 4-wire DMS

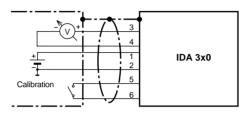



Fig. 14a: Wiring proposal 2-wire mA, floating mA indication with internal resistor  $R_{\rm i} < 38.2 \times U_{\rm g} - 380$ 

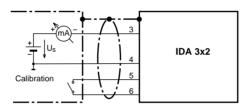



Fig. 14b: Wiring proposal 2-wire mA, mA indication with internal resistor  $\rm R_i < 38.2 \ x \ U_s ^- 380$ 

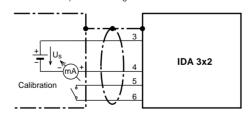



Fig. 15: Wiring proposal 3-wire Volts

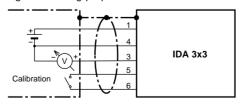





Fig. 16a: Wiring proposal 4-wire Volts (unipolar)

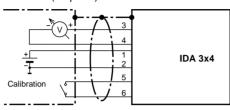
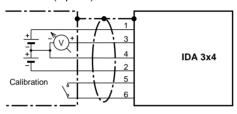




Fig. 16b: Wiring proposal 4-wire Volts (bipolar)





#### 7. Commissioning

| 7.1   | Supply voltage                     | 24 |
|-------|------------------------------------|----|
| 7.2   | Calibration and zero balance       | 24 |
| 7.2.1 | Pressure transducer IDA3x0         | 24 |
| 7.2.2 | Pressure transducer IDA3x2/3x3/3x4 | 25 |
| 7.3   | Operation                          | 26 |

ATTENTION Before putting the PT into operation, make sure the PT is securely mounted and sealed

#### 7.1 Supply voltage

ATTENTION Using a supply voltage which is different from that stated in the technical specifications or has reversed polarity can damage the PT or cause it to malfunction.

**DYNISCO** recommends operating the pressure transducer IDA3x0 (without amplifier) with a supply voltage of 10 VDC. Supply voltages from 6 to 12 VDC are permitted.

#### 7.2 Calibration and zero balance

PTs of series IDA 3xx have an internal calibration signal. Connecting terminals 5 and 6 switches the calibration signal to the signal output. It is 80% of the full scale pressure of the transducer.

ATTENTION Calibrate in pressureless state and at room temperature. Other ambient temperatures will corrupt the signal.

ATTENTION Do not change the installed position of the PT after calibration. If the position is changed you must re-calibrate the PT.

#### 7.2.1 Pressure transducer IDA3x0 (without amplifier)

- Connect a meter or suitable display unit to the signal output.
- Set the display unit or external amplifier to pressureless state (zero point).



- Set the calibration value (80% of nominal pressure) on the display unit or external amplifier.
- Check the zero point setting on the display unit once again.

Readjust the zero point at operating temperature!

- Wait until a steady operating temperature is reached at the pressure sensor.
- Set the zero point on the display unit or external amplifier.

#### 7.2.2 Pressure transducer IDA3x2/3x3/3x4

The adjustment is made at two potentiometer screws in the cover section of the electronic housing.

- Remove the cap screws from the potentiometers.

Potentiometer adjusting screw "N" for zero adjustment.

Potentiometer adjusting screw "B" for range adjustment.




Fig. 17: Housing cover

- Connect a meter or suitable instrument to the signal output to verify the settings.
- Adjust zero at potentiometer adjusting screw "N" and verify on the meter.
- Connect terminals 5 and 6.
   ➡ The calibration signal is connected to the output.
- Adjust calibration value (80% of full scale pressure) at potentiometer adjusting screw "B" and verify on the meter.
- Check the zero setting again.
- Repeat the zero adjustment and calibration value as necessary.



Readjust the zero point at operating temperature!

- Wait until a steady operating temperature is reached at the pressure sensor.
- Adjust zero at potentiometer adjusting screw "N" and verify on the meter.
- Replace the cover screws on the potentiometers.

#### 7.3 Operation

ATTENTION Operating temperature at the PT diaphragm max. +85°C (IDA 3x0 max. +120°C).

Higher temperatures will damage the PT.

ATTENTION Ambient temperature for the housing max.
+85°C. Higher temperatures can result in damage or malfunctions.

Mount the PT only in locations where this

temperature is not exceeded.



#### 8. Maintenance

| 8.1 | Maintenance     | 27 |
|-----|-----------------|----|
| 8.2 | Repair/disposal | 27 |

#### 8.1 Maintenance



Mounting and electrical connection of the PT must be done by authorised specialists with EMC training only, following all applicable regulations, and in pressureless, voltage-free condition with the machine switched off

The machine must be secured against being switched back on!

ATTENTION ESD sensitive component. Electrostatic discharge may damage the PT. Take ESD precautions.

ATTENTION Do not clean PT with hard objects.

This will damage the PT!

ATTENTION Always use a spanner applied to the designated hexagon collar when screwing the PT in and out.

Do not apply the tool to the housing!

The PT is almost maintenance free.

 Clean the PT with soft and dry cloth during the machine maintenance.

#### 8.2 Repair/disposal

Please send defective PTs to your **DYNISCO** representative.

For addresses, see the back cover of the operating manual.

## 9. Accessories

- Pressure sensor simulator
- Pressure sensor calibrating device

## Cable connector, cable gland, cable

| Designation                        | Order no. |
|------------------------------------|-----------|
| Cable connector DIN 7-pin          | E311 0035 |
| Cable connector Bendix             | E311 0029 |
| Cable gland PG 7 CE                | E447 0037 |
| Connection cable VT 460 - 6 Meter  | 9VT0 0017 |
| Connection cable VT 460 - 10 Meter | 9VT0 0018 |



## 10. Troubleshooting

## 10.1 Troubleshooting

29

## 10.1 Troubleshooting

| Fault                                  | Possible cause                                       | Resolution                                                      |
|----------------------------------------|------------------------------------------------------|-----------------------------------------------------------------|
| No signal                              | Cable breakage or poor contact                       | Check cable<br>and contact, or<br>replace                       |
|                                        | No supply voltage                                    | Check supply voltage                                            |
| Strong zero shift when screwing in     | Mounting hole incorrectly produced (alignment error) | Check hole,<br>rework if<br>necessary (see<br>chapter 6.1, 6.2) |
|                                        | Mounting torque<br>too high                          | Adjust to max.<br>22 Nm mounting<br>torque                      |
| No signal change despite pressure rise | Diaphragm<br>damaged                                 | Send pressure<br>transducer to<br><b>DYNISCO</b><br>for repair  |



#### 11. Declaration of conformity



#### Konformitätserklärung

Declaration of conformity Déclaration de conformité Declaración de conformidad Declaração de conformidade

Hiemit erklären wir, daß unser Produkt. Typ: We heneby declare hat our product, type: Nous effects a flat our product, type: Nous effects a flat of the product, type: Por la present electaremos que neutro product, type: Com a presente, declaramos que o nosso produto, typo: Com a presente idichariamo che in lostro prodoto typo: Hiemmee verklaren wij dat ons produkt, type: Hermed erklaren vi, at vorse produkt it typen:  $Mc = \eta r  

folgenden einschlägigen Bestimmungen entspricht: complies with the following relevant provisions: correspond aux dispositions pertinentes suivantes: satisface las disposiciones pertinentes siguientes: está em conformidade com as disposições pertinentes, a saber:

è conforme alle seguenti disposizioni pertinenti: voldoet aan de eisen van de in het vervolg genoemde bepalingen:

vollader aan de eisen van de in net vervolg gen bepalingen: overholder følgende relevante bestemmelser: ανταποκρίνεται στουσ ακόλουθουσ σχετικούσ κανονισμούσ:

Angewendete harmonisien te Komen, insbasondere: Applied harmonized standards, in particular, Normes harmonized sulfisées, no clearment: Normes harmonized sulfisées, or particular: Normes harmonizedas utilizadas, em particular: Norme amonizeta spolizatie in particular: Gebruikte geharmonisearde norme, in het bijzondere: Edogupode έντα εναρμονισμένα πρότυπα, ετά ίπότερα:

Dynisco Europe GmbH Wannenäckerstraße 24 D 74078 Heilbronn Tel. (0 71 31) 2 97 - 0 Fax (0 71 31) 2 32 60 Dichiarazione di conformità Verklaring van overeenstemming Konformitetserklæring Αήλωση συμμόρφωσησ ΕΟΚ

Drucktransmitter / Druckaufnehmer Pressure Transmitter / Pressure Transducer Serie MDT, EMT, EIT, MDA, IDA, TDA, LDA, PT, Dyna4

EMV-Richiline (89/336/EWG, 93/88/EWG, 93/44 EWG)
EMC guidelines (89/336/EC, 93/84/EEC)
Pinective EMV (89/336/CEE, 93/84/EEC)
Pinective EMV (89/336/CEE, 93/84/EEC)
Reglamento de compatibilidad electromagnética
(89/336/EMC, 93/84/EMC)
Pinective relativa à compatibilidad electromagnética
(89/336/EMC, 93/86/EWG), 93/44/EWG)
Direttiva sulla compatibilidade electromagnética
(89/336/EMC, 93/86/EWG), 93/44/EG)
Direttivo sulla compatibilidade electromagnética
(89/336/EMC, 93/44/EMC)
Pinettivo electromagnétis fortigetiphed
(89/336/EMC, 93/44/EMC)
Pinettivo electromagnétis fortigetiphed
(89/336/EMC, 93/46/EMC)
Pinettivo electromagnétis fortigetiphed
(89/336/EMC, 93/46/EMC)
Pinettivo electromagnétis fortigetiphed
(89/336/EMC)
Pinettivo electromagnétis fortigetiphed
(89/336/E

EN 50081-1 / EN 50082-2

Heilbrohn, den 1. Maj 1996

Daniel Nigg, deschäftlicher



# Visit us in the world wide web:

Dynisco Instruments 38 Forge Parkway Franklin, MA 02038 USA

Tel: +1 508 541 9400 Fax: +1 508 541 9437 Email: InfoInst@dynisco.com

Dynisco Extrusion 1634 Tate Blvd. S.E. Hickory, NC 28602-4244 USA

Tel: +1 828 362 9888 Fax: +1 828 326 8882 Email: <u>InfoExtr@dynisco.com</u>

Dynisco Polymer Test 115 Thousand Oaks Boulevard Morgantown, PA 19543 USA

Tel: +1 610 286 7555 Fax: +1 610 286 9396 Email: <u>InfoPT@dynisco.com</u>

Dynisco Europe GmbH Wannenäckerstraße 24 74078 Heilbronn Deutschland

Tel: +49 7131 2970 Fax:+49 7131 23260

Email: DyniscoEurope@dynisco.com

Dynisco Instruments S.a.r.I. 466, rue du Marché Rollay 94500 Champigny sur Marne France

Tel: +33 1 4881 8459 Fax: +33 1 4881 8334 Email. <u>DyniscoFrance@dynisco.com</u>

Dynisco.s.r.l. Via Adriatico, 2/2 20162 Milano Italia

Tel: +39 02 661 01733 Fax: +39 02 661 02908 Email: <u>Dyniscoltaly@dynisco.com</u> Dynisco UK Ltd. Silver Birches Business Park Aston Road, Bromsgrove Worcestershire B60 3EU Great Britain

Tel: +44 1527 577077 Fax: +44 1527 577070 Email: DyniscoUK@dynisco.com

Dynisco SPOL, S.R.O. cp. 579 756 55 Dolni Becva Czech Republic

Tel: +42 0571 647228 Fax: +42 0571 647224 Email: <u>Dynisco\_cz@ova.pvtnet.cz</u>

Dynisco B.V. Muziekplein 67 PO Box 666 NL-5400 AR Uden The Netherlands

Tel: +31 413 250665 Fax: +31 413 260548

Email: Dynisco-BV@dynisco.com

Dynisco
Service

24 HOURS A DAY - 7 D AYS A WEEK

WWW.dynisco.com

00 -800 - DYNISCO - 0
00 -800 - 39 64726 - 9